Copied to
clipboard

?

G = C2×C20.C23order 320 = 26·5

Direct product of C2 and C20.C23

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C20.C23, C20.31C24, D20.28C23, Dic10.27C23, (C2×Q8)⋊27D10, (C22×Q8)⋊4D5, C20.255(C2×D4), (C2×C20).211D4, Q8⋊D516C22, C4.31(C23×D5), C104(C8.C22), C52C8.13C23, (Q8×C10)⋊34C22, C5⋊Q1615C22, Q8.20(C22×D5), (C5×Q8).20C23, (C2×C20).548C23, C4○D20.57C22, (C22×C4).274D10, (C22×C10).210D4, C10.150(C22×D4), C23.93(C5⋊D4), C4.Dic533C22, (C2×D20).285C22, (C22×C20).280C22, (C2×Dic10).313C22, (Q8×C2×C10)⋊3C2, C55(C2×C8.C22), (C2×Q8⋊D5)⋊30C2, C4.25(C2×C5⋊D4), (C2×C5⋊Q16)⋊30C2, (C2×C4○D20).24C2, (C2×C10).585(C2×D4), (C2×C4).93(C5⋊D4), (C2×C4.Dic5)⋊27C2, C2.23(C22×C5⋊D4), (C2×C4).240(C22×D5), C22.113(C2×C5⋊D4), (C2×C52C8).183C22, SmallGroup(320,1480)

Series: Derived Chief Lower central Upper central

C1C20 — C2×C20.C23
C1C5C10C20D20C2×D20C2×C4○D20 — C2×C20.C23
C5C10C20 — C2×C20.C23

Subgroups: 798 in 258 conjugacy classes, 111 normal (25 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×2], C4 [×6], C22, C22 [×2], C22 [×6], C5, C8 [×4], C2×C4 [×2], C2×C4 [×4], C2×C4 [×11], D4 [×7], Q8 [×4], Q8 [×9], C23, C23, D5 [×2], C10, C10 [×2], C10 [×2], C2×C8 [×2], M4(2) [×4], SD16 [×8], Q16 [×8], C22×C4, C22×C4 [×2], C2×D4 [×2], C2×Q8 [×6], C2×Q8 [×4], C4○D4 [×6], Dic5 [×2], C20 [×2], C20 [×2], C20 [×4], D10 [×4], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×M4(2), C2×SD16 [×2], C2×Q16 [×2], C8.C22 [×8], C22×Q8, C2×C4○D4, C52C8 [×4], Dic10 [×2], Dic10, C4×D5 [×4], D20 [×2], D20, C2×Dic5, C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×4], C2×C20 [×6], C5×Q8 [×4], C5×Q8 [×6], C22×D5, C22×C10, C2×C8.C22, C2×C52C8 [×2], C4.Dic5 [×4], Q8⋊D5 [×8], C5⋊Q16 [×8], C2×Dic10, C2×C4×D5, C2×D20, C4○D20 [×4], C4○D20 [×2], C2×C5⋊D4, C22×C20, C22×C20, Q8×C10 [×6], Q8×C10 [×3], C2×C4.Dic5, C2×Q8⋊D5 [×2], C20.C23 [×8], C2×C5⋊Q16 [×2], C2×C4○D20, Q8×C2×C10, C2×C20.C23

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C8.C22 [×2], C22×D4, C5⋊D4 [×4], C22×D5 [×7], C2×C8.C22, C2×C5⋊D4 [×6], C23×D5, C20.C23 [×2], C22×C5⋊D4, C2×C20.C23

Generators and relations
 G = < a,b,c,d,e | a2=b20=c2=1, d2=e2=b10, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe-1=b11, cd=dc, ece-1=b5c, ede-1=b10d >

Smallest permutation representation
On 160 points
Generators in S160
(1 84)(2 85)(3 86)(4 87)(5 88)(6 89)(7 90)(8 91)(9 92)(10 93)(11 94)(12 95)(13 96)(14 97)(15 98)(16 99)(17 100)(18 81)(19 82)(20 83)(21 110)(22 111)(23 112)(24 113)(25 114)(26 115)(27 116)(28 117)(29 118)(30 119)(31 120)(32 101)(33 102)(34 103)(35 104)(36 105)(37 106)(38 107)(39 108)(40 109)(41 133)(42 134)(43 135)(44 136)(45 137)(46 138)(47 139)(48 140)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 127)(56 128)(57 129)(58 130)(59 131)(60 132)(61 152)(62 153)(63 154)(64 155)(65 156)(66 157)(67 158)(68 159)(69 160)(70 141)(71 142)(72 143)(73 144)(74 145)(75 146)(76 147)(77 148)(78 149)(79 150)(80 151)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 38)(22 37)(23 36)(24 35)(25 34)(26 33)(27 32)(28 31)(29 30)(39 40)(41 45)(42 44)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 54)(61 66)(62 65)(63 64)(67 80)(68 79)(69 78)(70 77)(71 76)(72 75)(73 74)(81 87)(82 86)(83 85)(88 100)(89 99)(90 98)(91 97)(92 96)(93 95)(101 116)(102 115)(103 114)(104 113)(105 112)(106 111)(107 110)(108 109)(117 120)(118 119)(121 129)(122 128)(123 127)(124 126)(130 140)(131 139)(132 138)(133 137)(134 136)(141 148)(142 147)(143 146)(144 145)(149 160)(150 159)(151 158)(152 157)(153 156)(154 155)
(1 135 11 125)(2 136 12 126)(3 137 13 127)(4 138 14 128)(5 139 15 129)(6 140 16 130)(7 121 17 131)(8 122 18 132)(9 123 19 133)(10 124 20 134)(21 156 31 146)(22 157 32 147)(23 158 33 148)(24 159 34 149)(25 160 35 150)(26 141 36 151)(27 142 37 152)(28 143 38 153)(29 144 39 154)(30 145 40 155)(41 92 51 82)(42 93 52 83)(43 94 53 84)(44 95 54 85)(45 96 55 86)(46 97 56 87)(47 98 57 88)(48 99 58 89)(49 100 59 90)(50 81 60 91)(61 116 71 106)(62 117 72 107)(63 118 73 108)(64 119 74 109)(65 120 75 110)(66 101 76 111)(67 102 77 112)(68 103 78 113)(69 104 79 114)(70 105 80 115)
(1 37 11 27)(2 28 12 38)(3 39 13 29)(4 30 14 40)(5 21 15 31)(6 32 16 22)(7 23 17 33)(8 34 18 24)(9 25 19 35)(10 36 20 26)(41 69 51 79)(42 80 52 70)(43 71 53 61)(44 62 54 72)(45 73 55 63)(46 64 56 74)(47 75 57 65)(48 66 58 76)(49 77 59 67)(50 68 60 78)(81 113 91 103)(82 104 92 114)(83 115 93 105)(84 106 94 116)(85 117 95 107)(86 108 96 118)(87 119 97 109)(88 110 98 120)(89 101 99 111)(90 112 100 102)(121 148 131 158)(122 159 132 149)(123 150 133 160)(124 141 134 151)(125 152 135 142)(126 143 136 153)(127 154 137 144)(128 145 138 155)(129 156 139 146)(130 147 140 157)

G:=sub<Sym(160)| (1,84)(2,85)(3,86)(4,87)(5,88)(6,89)(7,90)(8,91)(9,92)(10,93)(11,94)(12,95)(13,96)(14,97)(15,98)(16,99)(17,100)(18,81)(19,82)(20,83)(21,110)(22,111)(23,112)(24,113)(25,114)(26,115)(27,116)(28,117)(29,118)(30,119)(31,120)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,152)(62,153)(63,154)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,30)(39,40)(41,45)(42,44)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(61,66)(62,65)(63,64)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75)(73,74)(81,87)(82,86)(83,85)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95)(101,116)(102,115)(103,114)(104,113)(105,112)(106,111)(107,110)(108,109)(117,120)(118,119)(121,129)(122,128)(123,127)(124,126)(130,140)(131,139)(132,138)(133,137)(134,136)(141,148)(142,147)(143,146)(144,145)(149,160)(150,159)(151,158)(152,157)(153,156)(154,155), (1,135,11,125)(2,136,12,126)(3,137,13,127)(4,138,14,128)(5,139,15,129)(6,140,16,130)(7,121,17,131)(8,122,18,132)(9,123,19,133)(10,124,20,134)(21,156,31,146)(22,157,32,147)(23,158,33,148)(24,159,34,149)(25,160,35,150)(26,141,36,151)(27,142,37,152)(28,143,38,153)(29,144,39,154)(30,145,40,155)(41,92,51,82)(42,93,52,83)(43,94,53,84)(44,95,54,85)(45,96,55,86)(46,97,56,87)(47,98,57,88)(48,99,58,89)(49,100,59,90)(50,81,60,91)(61,116,71,106)(62,117,72,107)(63,118,73,108)(64,119,74,109)(65,120,75,110)(66,101,76,111)(67,102,77,112)(68,103,78,113)(69,104,79,114)(70,105,80,115), (1,37,11,27)(2,28,12,38)(3,39,13,29)(4,30,14,40)(5,21,15,31)(6,32,16,22)(7,23,17,33)(8,34,18,24)(9,25,19,35)(10,36,20,26)(41,69,51,79)(42,80,52,70)(43,71,53,61)(44,62,54,72)(45,73,55,63)(46,64,56,74)(47,75,57,65)(48,66,58,76)(49,77,59,67)(50,68,60,78)(81,113,91,103)(82,104,92,114)(83,115,93,105)(84,106,94,116)(85,117,95,107)(86,108,96,118)(87,119,97,109)(88,110,98,120)(89,101,99,111)(90,112,100,102)(121,148,131,158)(122,159,132,149)(123,150,133,160)(124,141,134,151)(125,152,135,142)(126,143,136,153)(127,154,137,144)(128,145,138,155)(129,156,139,146)(130,147,140,157)>;

G:=Group( (1,84)(2,85)(3,86)(4,87)(5,88)(6,89)(7,90)(8,91)(9,92)(10,93)(11,94)(12,95)(13,96)(14,97)(15,98)(16,99)(17,100)(18,81)(19,82)(20,83)(21,110)(22,111)(23,112)(24,113)(25,114)(26,115)(27,116)(28,117)(29,118)(30,119)(31,120)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,152)(62,153)(63,154)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,30)(39,40)(41,45)(42,44)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(61,66)(62,65)(63,64)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75)(73,74)(81,87)(82,86)(83,85)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95)(101,116)(102,115)(103,114)(104,113)(105,112)(106,111)(107,110)(108,109)(117,120)(118,119)(121,129)(122,128)(123,127)(124,126)(130,140)(131,139)(132,138)(133,137)(134,136)(141,148)(142,147)(143,146)(144,145)(149,160)(150,159)(151,158)(152,157)(153,156)(154,155), (1,135,11,125)(2,136,12,126)(3,137,13,127)(4,138,14,128)(5,139,15,129)(6,140,16,130)(7,121,17,131)(8,122,18,132)(9,123,19,133)(10,124,20,134)(21,156,31,146)(22,157,32,147)(23,158,33,148)(24,159,34,149)(25,160,35,150)(26,141,36,151)(27,142,37,152)(28,143,38,153)(29,144,39,154)(30,145,40,155)(41,92,51,82)(42,93,52,83)(43,94,53,84)(44,95,54,85)(45,96,55,86)(46,97,56,87)(47,98,57,88)(48,99,58,89)(49,100,59,90)(50,81,60,91)(61,116,71,106)(62,117,72,107)(63,118,73,108)(64,119,74,109)(65,120,75,110)(66,101,76,111)(67,102,77,112)(68,103,78,113)(69,104,79,114)(70,105,80,115), (1,37,11,27)(2,28,12,38)(3,39,13,29)(4,30,14,40)(5,21,15,31)(6,32,16,22)(7,23,17,33)(8,34,18,24)(9,25,19,35)(10,36,20,26)(41,69,51,79)(42,80,52,70)(43,71,53,61)(44,62,54,72)(45,73,55,63)(46,64,56,74)(47,75,57,65)(48,66,58,76)(49,77,59,67)(50,68,60,78)(81,113,91,103)(82,104,92,114)(83,115,93,105)(84,106,94,116)(85,117,95,107)(86,108,96,118)(87,119,97,109)(88,110,98,120)(89,101,99,111)(90,112,100,102)(121,148,131,158)(122,159,132,149)(123,150,133,160)(124,141,134,151)(125,152,135,142)(126,143,136,153)(127,154,137,144)(128,145,138,155)(129,156,139,146)(130,147,140,157) );

G=PermutationGroup([(1,84),(2,85),(3,86),(4,87),(5,88),(6,89),(7,90),(8,91),(9,92),(10,93),(11,94),(12,95),(13,96),(14,97),(15,98),(16,99),(17,100),(18,81),(19,82),(20,83),(21,110),(22,111),(23,112),(24,113),(25,114),(26,115),(27,116),(28,117),(29,118),(30,119),(31,120),(32,101),(33,102),(34,103),(35,104),(36,105),(37,106),(38,107),(39,108),(40,109),(41,133),(42,134),(43,135),(44,136),(45,137),(46,138),(47,139),(48,140),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,127),(56,128),(57,129),(58,130),(59,131),(60,132),(61,152),(62,153),(63,154),(64,155),(65,156),(66,157),(67,158),(68,159),(69,160),(70,141),(71,142),(72,143),(73,144),(74,145),(75,146),(76,147),(77,148),(78,149),(79,150),(80,151)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,38),(22,37),(23,36),(24,35),(25,34),(26,33),(27,32),(28,31),(29,30),(39,40),(41,45),(42,44),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,54),(61,66),(62,65),(63,64),(67,80),(68,79),(69,78),(70,77),(71,76),(72,75),(73,74),(81,87),(82,86),(83,85),(88,100),(89,99),(90,98),(91,97),(92,96),(93,95),(101,116),(102,115),(103,114),(104,113),(105,112),(106,111),(107,110),(108,109),(117,120),(118,119),(121,129),(122,128),(123,127),(124,126),(130,140),(131,139),(132,138),(133,137),(134,136),(141,148),(142,147),(143,146),(144,145),(149,160),(150,159),(151,158),(152,157),(153,156),(154,155)], [(1,135,11,125),(2,136,12,126),(3,137,13,127),(4,138,14,128),(5,139,15,129),(6,140,16,130),(7,121,17,131),(8,122,18,132),(9,123,19,133),(10,124,20,134),(21,156,31,146),(22,157,32,147),(23,158,33,148),(24,159,34,149),(25,160,35,150),(26,141,36,151),(27,142,37,152),(28,143,38,153),(29,144,39,154),(30,145,40,155),(41,92,51,82),(42,93,52,83),(43,94,53,84),(44,95,54,85),(45,96,55,86),(46,97,56,87),(47,98,57,88),(48,99,58,89),(49,100,59,90),(50,81,60,91),(61,116,71,106),(62,117,72,107),(63,118,73,108),(64,119,74,109),(65,120,75,110),(66,101,76,111),(67,102,77,112),(68,103,78,113),(69,104,79,114),(70,105,80,115)], [(1,37,11,27),(2,28,12,38),(3,39,13,29),(4,30,14,40),(5,21,15,31),(6,32,16,22),(7,23,17,33),(8,34,18,24),(9,25,19,35),(10,36,20,26),(41,69,51,79),(42,80,52,70),(43,71,53,61),(44,62,54,72),(45,73,55,63),(46,64,56,74),(47,75,57,65),(48,66,58,76),(49,77,59,67),(50,68,60,78),(81,113,91,103),(82,104,92,114),(83,115,93,105),(84,106,94,116),(85,117,95,107),(86,108,96,118),(87,119,97,109),(88,110,98,120),(89,101,99,111),(90,112,100,102),(121,148,131,158),(122,159,132,149),(123,150,133,160),(124,141,134,151),(125,152,135,142),(126,143,136,153),(127,154,137,144),(128,145,138,155),(129,156,139,146),(130,147,140,157)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
001000
000100
000010
000001
,
4000000
0400000
000061
0000400
00354000
001000
,
100000
0400000
0063500
00403500
0000356
000016
,
100000
010000
0000186
00003523
00233500
0061800
,
010000
100000
003136205
005203631
00205105
0036313621

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,35,1,0,0,0,0,40,0,0,0,6,40,0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,6,40,0,0,0,0,35,35,0,0,0,0,0,0,35,1,0,0,0,0,6,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,23,6,0,0,0,0,35,18,0,0,18,35,0,0,0,0,6,23,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,31,5,20,36,0,0,36,20,5,31,0,0,20,36,10,36,0,0,5,31,5,21] >;

62 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D10A···10N20A···20X
order12222222444444444455888810···1020···20
size111122202022224444202022202020202···24···4

62 irreducible representations

dim1111111222222244
type++++++++++++-
imageC1C2C2C2C2C2C2D4D4D5D10D10C5⋊D4C5⋊D4C8.C22C20.C23
kernelC2×C20.C23C2×C4.Dic5C2×Q8⋊D5C20.C23C2×C5⋊Q16C2×C4○D20Q8×C2×C10C2×C20C22×C10C22×Q8C22×C4C2×Q8C2×C4C23C10C2
# reps112821131221212428

In GAP, Magma, Sage, TeX

C_2\times C_{20}.C_2^3
% in TeX

G:=Group("C2xC20.C2^3");
// GroupNames label

G:=SmallGroup(320,1480);
// by ID

G=gap.SmallGroup(320,1480);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,297,136,1684,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^20=c^2=1,d^2=e^2=b^10,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=b^11,c*d=d*c,e*c*e^-1=b^5*c,e*d*e^-1=b^10*d>;
// generators/relations

׿
×
𝔽